Using a Simulation to Make a Prediction

You can use a simulation or model of an experiment to find the experimental probability of compound events.

EXAMPLE 2
 RGO Norld

At a street intersection, a vehicle is classified either as a car or a truck, and it can turn left, right, or go straight. About an equal number of cars and trucks go through the intersection and turn in each direction. Use a simulation to find the experimental probability that the next vehicle will be a car that turns right.

STEP 1 Choose a model.
Use a coin toss to model the two vehicle types.
Let Heads = Car and Tails = Truck
Use a spinner divided into 3 equal sectors to represent the three directions as shown.

STEP 2 Find the sample space for the compound event.

There are 6 possible outcomes: $\mathrm{CL}, \mathrm{CR}, \mathrm{CS}, \mathrm{TL}, \mathrm{TR}, \mathrm{TS}$
STEP 3 Perform the simulation.
A coin was tossed and a spinner spun 50 times.
The results are shown in the table.

	Car	Truck
Left	8	9
Right	6	11
Straight	9	7

STEP 4 Find the experimental probability that a car turns right.

$$
\begin{aligned}
P(\text { Car turns right }) & =\frac{\text { frequency of compound event }}{\text { total number of trials }} \\
& =\frac{6}{50} \quad \text { Substitute the values. } \\
& =\frac{3}{25} \quad \text { Simplify. }
\end{aligned}
$$

Based on the simulation, the experimental probability is $\frac{3}{25}$ that the
next vehicle will be a car that turns right.

Reflect

2. Make a Prediction Predict the number of cars that turn right out of 100 vehicles that enter the intersection. Explain your reasoning.
