Describing Events

An experiment is an activity involving chance in which results are observed. Each observation of an experiment is a trial, and each result is an outcome. A set of one or more outcomes is an event.

The probability of an event, written P (event), measures the likelihood that the event will occur. Probability is a measure between 0 and 1 as shown on the number line, and can be written as a fraction, a decimal, or a percent.

If the event is not likely to occur, the probability of the event is close to 0 . If an event is likely to occur, the event's probability is closer to 1.

Impossible	Unlikely	As likely as not	Likely
	Certain		
0	$\frac{1}{2}$	1	
0	0.5	1.0	
0%	50%	100%	

EXAMPLE 1

Tell whether each event is impossible, unlikely, as likely as not, likely, or certain. Then, tell whether the probability is 0 , close to $0, \frac{1}{2}$, close to 1 , or 1 .

A You roll a six-sided number cube and the number is 1 or greater.

This event is certain to happen. Its probability is 1.

Because you can roll the numbers 1, 2, 3, 4, 5 , and 6 on a number cube, there are 6 possible outcomes.

B You roll two number cubes and the sum of the numbers is 3 .
This event is unlikely to happen. Its probability is close to 0 .
C A bowl contains disks marked with the numbers 1 through 10. You close your eyes and select a disk at random. You pick an odd number.

This event is as likely as not. The probability is $\frac{1}{2}$.
D A spinner has 8 equal sections marked 0 through 7. You spin and land on a prime number.

This event is as likely as not. The probability is $\frac{1}{2}$.

Remember thata prime number is a whole number greater than 1 and has exactly 2 divisors, 1 and itself.

Reflect

2. The probability of event A is $\frac{1}{3}$. The probability of event B is $\frac{1}{4}$. What can you conclude about the two events?
