Guided Practice

For Exercises 1-2, use the figure. (Example 1)

1. Vocabulary The sum of the measures of $\angle U W V$ and $\angle U W Z$ is 90°, so $\angle U W V$ and $\angle U W Z$ are
\qquad angles.
2. Vocabulary $\angle U W V$ and $\angle V W X$ share a vertex and one side. They do not overlap, so $\angle U W V$ and $\angle V W X$ are

\qquad angles.

For Exercises 3-4, use the figure.

3. $\angle A G B$ and $\angle D G E$ are \qquad angles,
so $\mathrm{m} \angle D G E=$ \qquad . (Example 1)
4. Find the measure of $\angle E G F$. (Example 2)
$\mathrm{m} \angle C G D+\mathrm{m} \angle D G E+\mathrm{m} \angle E G F=180^{\circ}$
\qquad $+$ \qquad $+$ \qquad $=180^{\circ}$

$$
\begin{aligned}
+2 x & =180^{\circ} \\
2 x & = \\
\mathrm{m} \angle E G F=2 x & =
\end{aligned}
$$

5. Find the measures of $\angle A$ and $\angle B$. (Example 3)
$\mathrm{m} \angle A+\mathrm{m} \angle B+\mathrm{m} \angle C=180^{\circ}$
\qquad $+$ \qquad $+$ \qquad $=180$ $2 x+\ldots=180$ $2 x=$ \qquad

$x=$ \qquad so $\mathrm{m} \angle A=$ \qquad .
$x+10=$ \qquad so $m \angle B=$ \qquad .

ESSENTIAL QUESTION CHECK-IN

6. Suppose that you know that $\angle T$ and $\angle S$ are supplementary, and that $\mathrm{m} \angle T=3 \cdot(\mathrm{~m} \angle \mathrm{~S})$. How can you find $\mathrm{m} \angle T$?
